Skip navigation
All Places > NFPA Today > Blog > Authors boconnor

NFPA Today

4 Posts authored by: boconnor Employee

 

The NFPA and Fire Protection Research Foundation are working on several projects related to Energy Storage Systems (ESS) including research reports, training for first responders, and the development of standards. These projects are highlighted in a recent article by Utility Drive, a utility news outlet that caters to busy industry professionals.


The piece looks at NFPA 855, the Standard on the Installation of Stationary Energy Storage Systems, as well as other efforts that NFPA, the Fire Department of New York City (FDNY), and UL are undertaking to help build a safety foundation for the ESS industry.


The article features comments from Davion Hill of DNVG who is involved with several of the NFPA projects listed above as well as insight from Ken Boyce from UL, who is collaborating with NFPA on the development of energy storage safety standards. Representatives from NFPA are also working closely with FDNY leaders on several different projects to optimize the well-being of the general public and champion first responder safety.


ESS is not new and it's certainly not going away. Feel free to use the comment box below to ask questions or to start a discussion. 

 

With the present growth of the energy storage industry, the National Fire Protection Association (NFPA) is actively engaged in a number of diverse initiatives including standards development, training, and research projects aimed at promoting the continued safe and sustainable expansion of this renewable technology. This presentation will talk about some of the standards that address energy storage systems as well as training that NFPA has developed to assist first responders who may encounter these unique hazards.

 

I presented on this topic during my latest NFPA Live. I got this great follow-up question at the end of the presentation. I hope you find some value in it.

 

NFPA 855 is now open for public input. What is a Public Input? This is a way for the public (anyone) to communicate the changes they would like to see in the standard and provide an explanation as to why the change should be implemented.

 

Public Input Closing Date is October 4, 2017. To participate go to www.nfpa.org/855 and click on the blue “Submit a Public Input for the Next Edition” link.

 

---
NFPA Live is an interactive video series in which members of NFPA staff address some of the most frequent topics they receive through the Member's Only Technical Question service. If you are currently an NFPA Member you can view the entire video by following this link. If you're not currently a member, join today!

ESS el

For those of you who are unfamiliar, energy storage systems (ESS) are devices that can store energy for use as electrical energy at a later time. They are used in residential, commercial and utility applications listed below. These storage systems are important because they provide resiliency and reliability to our aging electrical grid system.


The most popular form of ESS are batteries and in particular, rechargeable lithium ion batteries. Other types of ESS include the following:
1. Flywheels
2. Pumped Hydro
3. Ultra Capacitors
4. Compressed Air
5. Thermal Storage (molten salts)


But I will concentrate on batteries for this article. Lithium Ion batteries are commonplace in today’s consumer electronics, usually found in your laptops, phones and even electric and hybrid vehicles. They are used in such a variety of applications because of their high energy density.


What do we use Energy Storage Systems for?
One huge application of Energy Storage Systems is to supplement renewable energy such as solar panels or wind turbines. The use of ESS allows any excess unused power generated to be stored for later use. This is important because it means you can use electricity from renewable power generation methods any time and not just when the sun it out or when the wind is blowing. Estimates have shown that residential solar systems will regularly include energy storage in the future.

 

When looking at what drives most industries forward one word comes to mind, money, and ESS is no different. A big driver of recent ESS installations is the cost saving benefit. For those of you who are unaware, electric companies vary their rates throughout the day based on demand. ESS allows a user to shift where their electricity comes from by drawing power from the system during the higher cost daytime hours then recharging during the lower cost nighttime hours. This way you are always paying the lower rate for electricity.


One last application is using ESS for Backup Power, which is a power supply used to provide alternating current power to a load for some period of time in the event of a power failure. This is often used in hospitals, data centers and homes.

 

ESS Hazards
So that was a little background as to what ESS are and how they are used, but along with this great technology comes some unique hazards. They are as follows:

 

1. Thermal Runaway. Thermal Runaway is a term used to describe the rapid and uncontrolled release of heat energy from a battery cell. Thermal runaway occurs when a battery creates more heat than it can dissipate which can result in a battery fire or explosion. Due to the configuration of batteries thermal runaway can often spread to adjacent cells, batteries and materials, causing fire to spread rapidly. Also, these ESS are often incased in many layers of protection and the visible signs of thermal runaway can be hidden in its early stages.


2. Stranded Energy. Something that is particularly tricky about Energy Storage Systems is that they often do not dissipate all of their energy when they are involved in a fire. This can be dangerous for the first responders who are navigating a fire scene. Once the fire is out that doesn’t mean the shock hazard is gone.


3. Re-ignition. ESS has an uncanny ability to reignite after the fire is thought to be extinguished. This is because of the stranded energy not dissipating in a fire, it can be cooled and the fire thought to be extinguished but if it doesn’t completely stop thermal runaway then the temperature will continue to increase and can reignite hours or even days later.


4. Off-Gassing. While involved in a fire, battery energy storage systems often let off different flammable and toxic gasses. These are dangerous while both fighting the fire and while cleaning up afterwards. Different ventilation techniques must be considered when installing these systems.


5. Toxic Runoff. Along with toxic gasses, while a first responder is trying to control the fire with their hose, water can create a toxic runoff that can effect surrounding areas. This is still a challenging problem to solve with no clear answer.


6. Lack of Information. There are a limited number of publicly available information on how these ESS behave in a fire. The industry is looking to the future for more large scale fire tests to be conducted.


7. Variety of Types. There are many different types, sizes and chemistries of energy storage systems that it is hard to have a “one size fits all” approach to fire safety.

 

Extinguishment
One popular myth about extinguishment is that you cannot put out a lithium ion battery fire with water. This conclusion is usually jumped to because pure lithium metal is reactive with water. Lithium ion batteries, however, do not have pure lithium in them but instead are made with lithium salts that can be safely extinguished with water.


The unique hazards listed above can make extinguishment of Energy Storage Systems quite difficult. A recent study by DNVGL and Con Edison recommend a two-tiered approach to fire extinguishment with a total flooding gaseous agent to control a fire early on that is followed up by ventilation and copious amounts of water being added to the fire if the fire gets too hot for the gaseous system to cool.


With the advancement of technology and the creativity of applications I do not see ESS going away anytime soon. With ESS here to stay the NFPA is working on the development of a Standard to address many of these safety issues, NFPA 855: Standard on the Installation of Stationary Energy Storage Systems.


If you need more information on regulations regarding ESS you can look into NFPA 70: National Electrical Code (NEC), Article 706, NFPA 1: Fire Code, Chapter 52 or our ESS resource page www.nfpa.org/ESS

Remembering When Conference 2016

Karen Berard-Reed and the NFPA have officially been recognized by the State Firefighters' and Fire Marshals' Association of Texas and the Texas Fire Marshals' Association for their Remembering When Program as a key program to keep Texans safe. This recognition includes an endorsement of Remembering When as a statewide fire and fall prevention program for older adults.

 

These recognitions were presented to the NFPA from John Erskine, Burnet, Texas Fire Marshal and Richard Zelade of the State Firefighters Marshals Office. 

 

Remembering When: A Fire and Fall Prevention Program for Older Adults, was developed by NFPA and the Centers for Disease Control and Prevention (CDC) to help older adults live safely at home for as long as possible.

Remembering When is centered around 16 key safety messages, eight fire prevention and eight fall prevention, developed by experts from national and local safety organizations as well as through focus group testing in high-fire-risk states.

Filter Blog

By date: By tag: